Math 10A with Professor Stankova
Quiz 5; Wednesday, 9/27/2017
Section \#107; Time: 11 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. TRUE False It is possible for Newton's method to fail.
2. TRUE False You can change an exponential indeterminate into a form suitable for using L'Hopital's rule.
Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (5 points) Approximate (1.1) ${ }^{0.1}$ using second order Taylor series. You may leave your answer as a sum of fractions.

Solution: We want to approximate the function $f(x)=x^{0.1}=x^{1 / 10}$. A good base point is a value nearby which is $1^{1 / 10}=1$. So expanding $f(x)$ around $x=1$ gives

$$
f(x) \approx f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2}(x-1)^{2}=1+\frac{x-1}{10}-\frac{9(x-1)^{2}}{200}
$$

Now we plug in $x=1.1$ to get

$$
(1.1)^{0.1} \approx 1+\frac{0.1}{10}-\frac{9(0.1)^{2}}{200}=1+\frac{1}{100}-\frac{9}{2 \cdot 10^{4}} .
$$

(b) (1 point) When using Newton's method to find a zero of a function $f(x)$, what is the formula for the next guess x_{1} if my current guess is x_{0} ?

Solution:

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} .
$$

(c) (4 points) Use Newton's method once to approximate $(1.1)^{0.1}$.

Solution: Our function that we want to find a zero of is not $x^{0.1}$ but $x^{10}-1.1$. Our initial guess is $x_{0}=1$. Now we use the above formula to get that our next guess is

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=1-\frac{1-1.1}{10 \cdot 1^{9}}=1+\frac{0.1}{10}=1.01 .
$$

